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This paper describes an attempt to derive a new methodology to determine the significance of effects
estimated from a screening design, starting from the algorithm of Dong but overcoming its draw-
backs. Especially in situations where effect sparsity does not occur and the number of significant effects
approaches 50%, the currently often applied algorithm of Dong leads to many important effects incorrectly
considered non-significant, i.e. to false negative results. For these situations, a new methodology is recom-
creening design
ffects significance
lgorithm of Dong
ffect sparsity

mended. Based on the algorithm of Dong, several alternative approaches were explored and compared.
From all approaches, the one using the 75% lowest absolute factor effects to calculate the initial error
estimation s0, i.e. s0 = 1.5 × median|E75%|, resulted in the highest number of correct decisions on effects
significance. After its definition, the new methodology was tested on a bioanalysis application data set.
This study confirmed the earlier conclusions on literature and semisimulated data. The new methodology
is especially interesting to be applied in minimal screening designs, for which other error estimates (e.g.
based on interaction or dummy effects) cannot be applied.
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. Introduction

Extensive method validation is often required, especially in
harmaceutical industries, in order to meet the strict regulations
et by the regulatory bodies. Robustness testing is part of such val-
dation. The ICH (International Conference on Harmonisation of
echnical Requirements for the Registration of Pharmaceuticals for
uman Use) guidelines define robustness as: “The robustness of an
nalytical procedure is a measure of its capacity to remain unaffected
y small, but deliberate variations in method parameters and provides
n indication of its reliability during normal usage.”[1].

In the evaluation of method robustness, two-level screening
esigns, such as fractional factorial (FF) or Plackett-Burman (PB)
esigns, are usually applied [2,3]. These designs are also often used
o identify the most important factors during the first phase of

ethod optimization [4]. They allow screening a relatively high

umber of factors f in a rather small number of experiments
N ≥ f + 1) [2,3]. FF designs perform only a fraction of a full factorial
esign. The number of experiments is a power of two, and depend-

ng on the design, two-factor interaction effects can or cannot be

� This paper is part of a special issue entitled “Method Validation, Comparison
nd Transfer”, guest edited by Serge Rudaz and Philippe Hubert.
∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.

E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden).
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stimated unconfounded from the main effects [2,3]. PB designs
re factorial designs that examine up to N − 1 factors in N (multiple
f four) experiments [2,3,5]. When less than N − 1 factors are to be
xamined, the remaining PB design columns are defined as dummy
actor columns [3].

In robustness testing, two-factor interaction or dummy factor
ffects estimated from FF and PB designs, respectively, are assumed
o be negligible, and can therefore be used in the statistical interpre-
ation of the estimated factor effects (see further) [3]. In the case of
creening during optimization, the negligibility cannot be assumed
nymore and these effects should not be used to draw decisions on
he factor effects significance.

To analyze screening design results, first the factor effects are
stimated [2,3]. Afterwards usually an approach is selected to iden-
ify the important or significant effects. Both graphical, such as
ormal [2,3,6] or half-normal [2,3,7] probability plots, and statis-
ical methods can be used. Most statistical methods use the t-test,
here the t statistic requires an estimation of error. The error esti-
ation can be made in several ways, e.g. using the variance of

eplicated experiments (e.g. at center point level, or duplicated
esign experiments) [2,3], from a priori declared negligible effects

interaction or dummy effects) [2,3], or from effects defined a pos-
eriori negligible by the algorithms of Lenth [8] or Dong [3,9].

Two types of erroneous decisions can occur. A false positive
esult is obtained when a non-significant effect is considered sig-
ificant, and a false negative result when a significant effect is

http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:yvanvdh@vub.ac.be
dx.doi.org/10.1016/j.jchromb.2008.10.019
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ndicated as being non-significant. The latter is considered worst,
een from a practical point of view.

Needless to say, it is frequently desired to reduce time and costs
hen performing a screening or a robustness test. For this pur-

ose, often minimal designs are applied, in which the factors are
xamined in the smallest design possible. These designs do not con-
ain enough interactions or dummy factors unconfounded with the

ain effects, to estimate the error properly. The use of the algorithm
f Dong is then recommended [3]. However, the algorithms of Lenth
nd Dong require effect sparsity, i.e. �50% significant effects. In sit-
ations where about 50% of the effects are significant, the algorithm
f Dong becomes incapable to indicate the significant effects cor-
ectly [10]. The algorithm of Dong then is overestimating the critical
ffect, resulting in a situation where significant effects incorrectly
re considered non-significant. In these situations, it is advised to
erform a design that allows estimating the effects of enough a
riori declared negligible terms to estimate the error or the crit-

cal effect [10]. However, a screening design that complies to this
ondition might still require rather many experiments, especially
hen a high number of factors needs to be evaluated.

Therefore, in this study, it was tried to adapt the algorithm of
ong, in order to obtain a more accurate estimation of the critical
ffect in all situations, especially in those with about 50% signifi-
ant effects. Nine data sets or designs were taken from literature
7,11–17], with different numbers of examined factors, responses,
nd design experiments (N = 8, 12, 16, 24). The designs were either
F or PB designs. Eleven cases represented situations where about
0% of the considered effects are significant. These cases were either
aken from the literature, or partially simulated starting from the
iterature data. Different approaches to adapt the algorithm of Dong

ere considered. A new approach was proposed to obtain a more
ccurate estimation of the critical effect. This new approach was
hen applied to a bioanalysis data set, taken from literature [18],
ontaining the robustness study results of a high-performance liq-
id chromatographic (HPLC) method to analyze three anti-epileptic
rugs, pregabalin, gabapentin, and vigabatrin, in human serum.

. Theory

Factor effects in two-level screening designs are calculated as
ollows [2,3]

X =
∑

Y(+) −
∑

Y(−)
N/2

(1)

here EX is the effect of factor X,
∑

Y(+) and
∑

Y(−) are the sums
f the responses where factor X is at (+) or (−) level, respectively,
nd N is the number of design experiments.

In the statistical interpretation, a t-test statistic [2,3] is calcu-
ated to evaluate whether a given EX is significantly different from
ero, i.e. factor X has a significant effect.

= |EX|
(SE)e

⇔ ttab (2)

here (SE)e is the standard error of the effect.
The calculated test statistic (Eq. (2)) is compared with a tabu-

ated t-value, ttab. The number of degrees of freedom (df) for (SE)e

nd the applied significance level � will determine ttab. An effect
ith a t ≥ ttab is considered significant, while t < ttab suggests a non-

ignificant effect.

The algorithm of Dong [3,9] is an approach to estimate the error

SE)e. This algorithm calculates from an initial estimate of error
ased on all effects, s0 (Eq. (3)), a final estimation of the stan-
ard error, s1 (Eq. (4)), based on the effects that are considered not

mportant. The estimated s1 allows determining a critical effect for

d
e
a

f

. B 877 (2009) 2252–2261 2253

response, Ecrit, called the Margin of Error (ME) (Eq. (5)).

0 = 1.5 × median|Ei| (3)

1 =
√

m−1
∑

E2
j (4)

here Ei is the effect of factor i, Ej an effect that in absolute value
s smaller than or equal to 2.5*s0, and m the number of such
ffects. The elimination of effects exceeding 2.5*s0 is derived from
(|EX| > 2.5*s0) ≈ 0.01.

crit = ME = t(1−(�/2), df) × s1 ⇔ |EX| (5)

n Eq. (5), df = m and usually � = 0.05. Values of |EX| that are larger
han or equal to ME are considered significant. For the above-

entioned minimal designs, the algorithm of Dong is appropriate
o determine significant effects, except in situations where about
0% of the considered effects is significant [3,10]. The algorithm of
ong is further in the text indicated as approach D.

Because of the above drawback, in this study, several approaches
ere considered to adapt the algorithm of Dong. The first approach
oes not take into account s0 to determine the number of effects

to include in the estimation of s1. The approach simply con-
ists of calculating the Margins of Error for all different numbers
f effects, from 1 to i, included in the estimation of s1. The consecu-
ively included effects are those obtained after sorting and starting
ith the absolute smallest. Then, the MEs are plotted as a function

f the number of included effects. In this approach, the lowest ME
t a given significance level � is then considered the critical effect.
his approach is indicated as L further on.

The second approach also does not calculate s0 to determine the
umber of effects m to include in the estimation of s1. Here a half-
ormal probability or Birnbaun plot is drawn and visually evaluated
o decide on the number of effects, mB, to include in the estimation
f s1. More information concerning the construction and interpre-
ation of these plots can be found in [2,3,7]. Non-significant effects
end to fall on a straight line through zero, whereas significant
ffects deviate from this straight line. In this approach, m in Eq.
4) is replaced by mB, and Ej by EB, where EB represent the mB low-
st absolute effects, which were considered non-significant from
he plot, thus s1 =

√
m−1

B

∑
E2

B. The corresponding ME is then cal-
ulated with Eq. (5), where df = mB. This approach is indicated as B
urther on.

The third approach, indicated as P, replaces Ej in Eq. (4) by EP,
nd m by mP, where EP is an effect that in absolute value is smaller
han or equal to 2.0*s0, and mP the number of such effects, thus s1 =

m−1
P

∑
E2

P. In this approach, the elimination of effects exceeding
.0*s0 is derived from P(|EX| > 2.0*s0) ≈ 0.05. The corresponding ME

s then calculated with Eq. (5), where df = mP.
Whereas the first three approaches focus on adapting the final

stimation of error s1, a fourth approach reconsiders the initial esti-
ate of error s0. To estimate s0, the algorithm of Dong uses the
edian of all absolute effects. In this fourth approach, the median

s arbitrarily calculated from the 95%, 90%, 85%, 80%, or 75% lowest
bsolute effects. In Eq. (3), Ei is then replaced by E%, which rep-
esents the considered percentage of lowest absolute effects, thus
0 = 1.5 × median|E%|. This approach is indicated as 95, 90, 85, 80
r 75%, depending on the percentage included effects. In Table 1,
he numbers of included and excluded effects for s0 are given for

ifferent designs and for different percentages of lowest absolute
ffects. The corresponding s1 estimation is then made with Eq. (4),
nd the corresponding ME with Eq. (5).

The results of these four approaches were evaluated critically
or a number of case studies, and are discussed further.
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Table 1
Numbers of included (# included) and of excluded (# excluded) effects for s0,
considering different designs and percentages of lowest absolute effects (95%-90%-
85%-80%-75%). N = number of design experiments.

N % # included # excluded

8 95-90-85-80 6 1
75 5 2

12 95-90 10 1
85-80 9 2
75 8 3

16 95-90 14 1
85 13 2
80 12 3
75 11 4

24 95 22 1
90 21 2
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85 20 3
80 18 5
75 17 6

. Experimental

.1. Data sets to test the new approaches

The nine data sets applied in [10] were also used here in order to
tudy the above approaches to determine the effects significance
rom a screening design. These nine data sets were taken from
iterature [7,11–17] and resulted from the use of screening designs
uring robustness testing (data sets 1 till 7) or method optimiza-
ion (data sets 8 and 9). The numbers of design experiments were

(data sets 1 till 4), 12 (data sets 5 and 6), 16 (data sets 7 and 8)
r 24 (data set 9). Both fractional factorial (data sets 1, 2, 4, and
) and Plackett-Burman (data sets 3, 5, 6, 7, and 9) designs were
onsidered. Table 2 gives an overview of the nine data sets. The
umbers of design experiments (N), of examined factors (f), of

nteractions (I) (estimated unconfounded with the main effects)
r dummy (d) effects, and of responses (r) are given for each data
et.

Amongst these
∑

r = 34 responses, eleven represent situations
here about 50% of the effects are significant (Table 3 ). These

ases were either taken from the literature or partially simulated.
or data sets 1 and 3 (both N = 8), one response with 3/7 × 100 = 43%

ignificant effects, i.e. responses 1 and 7, respectively, was retained
nd evaluated. For data set 6 (N = 12), three responses (21–23)
ere retained, each with 5/11 × 100 = 45% significant effects. For
ata sets 4 (N = 8), 7 (N = 16), and 9 (N = 24), such responses were
artially simulated [10]. For data set 4 (N = 8), two partially simu-

s
t
b
t
n

able 2
verview of the data sets: the origin with the applied experimental design, the number o

I) (estimated unconfounded with the main effects) or dummy effects (d), and the numbe

ata set Origin of case study Desi

Robustness test of chemical filtration process in an
industrial plant [7]

27-4

Robustness test of HPLC assay for triadimenol [11] 26-3

Robustness test of HPLC assay for ketoconazole in
antidandruff shampoo [12]

7-fac

Robustness test of HPLC assay for tetracycline and its
impurities [13]

24-1

Robustness test of CE assay to separate enantiomers of
praziquantel and warfarin [14]

11-fa

Robustness test of HPLC assay for a drug substance [15] 11-fa
Robustness test of HPLC assay for formaldehyde in
antidandruff shampoo [12]

15-fa

Optimization of FIA assay for compounds with a secondary
amine or an amide function [16]

26-2

Optimization of FIA assay for fluticasone propionate [17] 23-f
. B 877 (2009) 2252–2261

ated responses (12 and 13) were created in which 3/7 × 100 = 43%
nd 4/7 × 100 = 57% significant effects, respectively, occur. For data
et 7 (N = 16), two partially simulated responses (28 and 29)
ere created with 6/15 × 100 = 40% and 8/15 × 100 = 53% significant

ffects, respectively. For data set 9 (N = 24), two partially simu-
ated situations (33 and 34) were created with 7/23 × 100 = 30% and
2/23 × 100 = 52% significant factor effects, respectively.

The above numbers of significant effects, that were used as ref-
rence further in the text, were obtained from a graphical (data sets
till 9) and, where possible, an alternative statistical (data sets 4 till
) interpretation of the data. Graphically, a half-normal probability
lot was drawn, whereas statistically critical effects were calculated
ased on a priori considered negligible effects, i.e. interactions or
ummies for FF or PB designs, respectively. More explanation and
he results of both reference approaches (R) can be found in [10]
nd Table 3. In case these two methods lead to a different result,
he result from the negligible effects was used.

For the exact design set-ups of the data sets, we refer to [10],
here for each data set, the factors, the experimental design, the

esponses, the effects on each response, and the critical effects,
stimated from the algorithm of Dong, are presented. For original
nformation regarding the nine data sets, we refer to [7,11–17].

The ratio Ecrit/Ecrit,D in Table 3 allows situating the critical effect
f a given approach relative to that obtained by the algorithm of
ong. When Ecrit/Ecrit,D < 1 the alternative approach uses a critical
ffect that is smaller than that used by Dong’s approach, i.e. some
arger effects were excluded from the error estimation.

.2. Application data set

The best new approach to determine the effects significance
rom a screening design set-up was subsequently applied to analyze
he results of an application data set [18].

The robustness of a high-performance liquid chromato-
raphic method to analyze three anti-epileptic drugs, pregabalin,
abapentin, and vigabatrin, in human serum, was tested in [18].
irst the robustness of the chromatographic analysis was evalu-
ted, and secondly that of the sample preparation procedure. For
ur study, the first part of the robustness study was retained. The
obustness of the chromatographic analysis was performed using a
2-experiments Plackett-Burman design. The effects of six factors
n several responses were evaluated. The retained responses for our

tudy were the % relative standard deviations (%RSD) of the vigaba-
rin (%RSDv) and gabapentin (%RSDg) concentrations, the resolution
etween the vigabatrin peak and its nearest neighbour peak (Rsv),
he asymmetry factor of the gabapentin peak (Asfg), and the plate
umber of gabapentin ((N/mm)g).

f experiments (N), the number of examined factors (f), the number of interactions
r of responses (r).

gn N f I d r

fractional factorial 8 7 0 – 1

fractional factorial 8 6 1 – 3
tors 8-experiments PB 8 6 – 1 3

fractional factorial 8 4 3 - 6

ctors 12-experiments PB 12 8 - 3 3

ctors 12-experiments PB 12 6 – 5 7
ctors 16-experiments PB 16 11 – 4 6

fractional factorial 16 6 9 – 2

actors 24-experiments PB 24 8 – 15 3
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Table 3
Evaluation of different approaches to determine effects significance; (#) number of
factors included in the estimation of s1, (Ecrit/Ecrit,D) the critical effect relative to that
of Dong, both at � = 0.05, and (E�=0.05) the effects considered significant at � = 0.05.
For the meaning of R, D, L, B, P, 95, 90, 85, 80, and 75%, see text. The results are
presented for each data set (a–i) and each response. * responses with about 50%
significant effects and (. . .) their number.

(a) Data set 1

Response Approach # Ecrit/Ecrit,D E˛=0.05

1*(3) R / / F/A/C
D 5 1 F/A
L 4 0.54 F/A/C
B 4 0.54 F/A/C
P 5 1 F/A
95-90-85-80% 5 1 F/A
75% 4 0.54 F/A/C

(b) Data set 2

Response Approach # Ecrit/Ecrit,D E˛=0.05

2 R / / F
D 6 1 F
L 2 0.43 F/I1/C
B 6 1 F
P 6 1 F
95-90-85-80% 6 1 F
75% 6 1 F

3 R / / F/B
D 5 1 F/B
L 3 0.29 F/B/C
B 5 1 F/B
P 4 0.42 F/B/C
95-90-85-80% 4 0.42 F/B/C
75% 4 0.42 F/B/C

4 R / / E
D 6 1 E
L 3 0.68 E/A
B 6 1 E
P 6 1 E
95-90-85-80% 6 1 E
75% 6 1 E

(c) Data set 3

Response Approach # Ecrit/Ecrit,D E˛=0.05

5 R / / Nothing
D 7 1 Nothing
L 4 0.87 Nothing
B 7 1 Nothing
P 7 1 Nothing
95-90-85-80% 7 1 Nothing
75% 7 1 Nothing

6 R / / C
D 6 1 C
L 2 0.53 C/E/F
B 6 1 C
P 6 1 C
95-90-85-80% 6 1 C
75% 6 1 C

7*(3) R / / B/C/A
D 5 1 B
L 3 0.34 B/C/A
B 4 0.40 B/C/A
P 4 0.40 B/C/A
95-90-85-80% 4 0.40 B/C/A
75% 4 0.40 B/C/A

(d) Data set 4

Response Approach # Ecrit/Ecrit,D E˛=0.05

8 R / 1.52 B/C
D 5 1 B/C

Table 3 (Continued )

(d) Data set 4

Response Approach # Ecrit/Ecrit,D E˛=0.05

L 3 0.65 B/C
B 5 1 B/C
P 5 1 B/C
95-90-85-80% 5 1 B/C
75% 5 1 B/C

9 R / 1.21 B/C
D 5 1 B/C
L 3 0.94 B/C
B 5 1 B/C
P 5 1 B/C
95-90-85-80% 5 1 B/C
75% 5 1 B/C

10 R / 1.73 Nothing
D 7 1 Nothing
L 4 0.76 Nothing
B 7 1 Nothing
P 7 1 Nothing
95-90-85-80% 7 1 Nothing
75% 7 1 Nothing

11 R / 1.09 C
D 6 1 C
L 2 0.39 C/B/I3/A
B 6 1 C
P 6 1 C
95-90-85-80% 6 1 C
75% 6 1 C

12*(3) R / 1.30 B/A/C
D 4 1 B/A/C
L 2 0.74 B/A/C
B 4 1 B/A/C
P 4 1 B/A/C
95-90-85-80% 4 1 B/A/C
75% 4 1 B/A/C

13*(4) R / 0.30 B/A/C/D
D 7 1 Nothing
L 3 0.30 B/A/C/D
B 3 0.30 B/A/C/D
P 7 1 Nothing
95-90-85-80% 7 1 Nothing
75% 3 0.30 B/A/C/D

(e) Data set 5

Response Approach # Ecrit/Ecrit,D E˛=0.05

14 R / 0.71 H/D
D 11 1 Nothing
L 3 0.36 H/D/F/d1/A
B 9 0.63 H/D
P 10 0.85 H/D
95-90% 11 1 Nothing
85-80% 11 1 Nothing
75% 11 1 Nothing

15 R / 1.21 B
D 10 1 B
L 3 0.36 B/A/C/D/d1/E/d2

B 10 1 B
P 10 1 B
95-90% 10 1 B
85-80% 10 1 B
75% 10 1 B

16 R / 0.95 D
D 11 1 D
L 2 0.29 D/E/C/A/F/d3/d2/d1/B
B 10 0.75 D
P 10 0.75 D
95-90% 11 1 D
85-80% 11 1 D
75% 11 1 D
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Table 3 (Continued )

(f) Data set 6

Response Approach # Ecrit/Ecrit,D E˛=0.05

17 R / 0.81 F/D
D 9 1 F/D
L 2 0.11 F/D/B/A/d3/E/d2/d5

B 10 1.36 F/D
P 9 1 F/D
95-90% 9 1 F/D
85-80% 9 1 F/D
75% 9 1 F/D

18 R / 0.82 F
D 10 1 F
L 4 0.15 F/B/D/C/d4/d5

B 10 1 F
P 10 1 F
95-90% 10 1 F
85-80% 6 0.37 F/B/D/C/d4
75% 6 0.37 F/B/D/C/d4

19 R / 0.88 F/C
D 10 1 F
L 3 0.51 F/C/D
B 10 1 F
P 10 1 F
95-90% 10 1 F
85-80% 10 1 F
75% 10 1 F

20 R / 1.10 F
D 10 1 F
L 2 0.21 F/A/d3/E/d2/d4/C
B 10 1 F
P 9 0.81 F/A
95-90% 10 1 F
85-80% 9 0.81 F/A
75% 8 0.58 F/A/d3

21*(5) R / 0.95 A/F/D/C/B
D 6 1 A/F/D/C/B
L 1 0.03 A/F/D/C/B/d4/E/d3/d1/d2

B 6 1 A/F/D/C/B
P 6 1 A/F/D/C/B
95-90% 6 1 A/F/D/C/B
85-80% 6 1 A/F/D/C/B
75% 6 1 A/F/D/C/B

22*(5) R / 0.35 A/C/D/B/F
D 9 1 A
L 3 0.09 A/C/D/B/F/d4/d5/d1

B 6 0.30 A/C/D/B/F
P 7 0.47 A/C/D/B
95-90% 7 0.47 A/C/D/B
85-80% 7 0.47 A/C/D/B
75% 7 0.47 A/C/D/B

23*(5) R / 0.40 E/D/F/B/C
D 10 1 E
L 3 0.14 E/D/F/B/C/d4

B (1) 10 1 E
B (2) 5 0.19 E/D/F/B/C/d4

P 10 1 E
95-90% 9 0.83 E/D
85-80% 7 0.51 E/D/F/B
75% 6 0.35 E/D/F/B/C

(g) Data set 7

Response Approach # Ecrit/Ecrit,D E˛=0.05

24 R / 1.13 Nothing
D 15 1 Nothing
L 2 0.14 C/E/d4/I/A/F/D/B/H/d3/d1

B 15 1 Nothing
P 15 1 Nothing
95-90% 15 1 Nothing
85% 15 1 Nothing
80% 15 1 Nothing
75% 15 1 Nothing

Table 3 (Continued )

(g) Data set 7

Response Approach # Ecrit/Ecrit,D E˛=0.05

25 R / 0.99 C/E/B
D 12 1 C/E/B
L 4 0.46 C/E/B/G/J/F/H
B 12 1 C/E/B
P 12 1 C/E/B
95-90% 12 1 C/E/B
85% 12 1 C/E/B
80% 12 1 C/E/B
75% 12 1 C/E/B

26 R / 1.10 C/E
D 14 1 C/E
L 2 0.32 C/E/d2/B/H/d3/A/J
B 13 0.75 C/E
P 13 0.75 C/E
95-90% 14 1 C/E
85% 13 0.75 C/E
80% 13 0.75 C/E
75% 13 0.75 C/E

27 R / 1.43 C
D 14 1 C
L 3 0.57 C/E/d2

B 14 1 C
P 14 1 C
95-90% 14 1 C
85% 14 1 C
80% 14 1 C
75% 14 1 C

28*(6) R / 0.63 A/D/C/H/E/J
D 13 1 A/D
L 2 0.18 A/D/C/H/E/J/d2/B/d3

B 9 0.43 A/D/C/H/E/J
P 11 0.75 A/D/C/H
95-90% 13 1 A/D
85% 12 0.88 A/D/C
80% 11 0.75 A/D/C/H
75% 9 0.43 A/D/C/H/E/J

29*(8) R / 0.40 F/C/A/H/E/J/D/G
D 15 1 Nothing
L 2 0.24 F/C/A/H/E/J/D/G
B 7 0.29 F/C/A/H/E/J/D/G
P 15 1 Nothing
95-90% 15 1 Nothing
85% 10 0.75 Nothing
80% 9 0.66 F/C
75% 8 0.52 F/C/A/H/E/J/D/G

(h) Data set 8

Response Approach # Ecrit/Ecrit,D E˛=0.05

30 R / 0.86 A
D 15 1 Nothing
L 5 0.19 A/E/I5/B/I9/I1/D/I6

B (1) 15 1 Nothing
B (2) 9 0.38 A/E/I5/B/I9/I1

P 14 0.89 A
95-90% 14 0.89 A
85% 12 0.71 A/E/I5

80% 12 0.71 A/E/I5

75% 12 0.71 A/E/I5

31 R / 0.87 D/E
D 14 1 D
L 2 0.18 D/E/C/I6/B/I1/I9/I4/I3/I7/I8/A
B 14 1 D
P 14 1 D
95-90% 14 1 D
85% 14 1 D
80% 14 1 D
75% 14 1 D
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Table 3 (Continued )

(i) Data set 9

Response Approach # Ecrit/Ecrit,D E˛=0.05

32 R / 0.86 C/G/A/d2

D 21 1 C/G/A
L 2 0.29 C/G/A/d2/B/d7/H/d12/E/d6/d4/d13

B 21 1 C/G/A
P 20 0.91 C/G/A/d2

95% 21 1 C/G/A
90% 21 1 C/G/A
85% 21 1 C/G/A
80% 19 0.82 C/G/A/d2/B
75% 18 0.74 C/G/A/d2/B/d7

33*(7) R / 0.63 C/A/B/G/H/J/I
D 18 1 C/A/B/G/H/J/I
L 2 0.31 C/A/B/G/H/J/I/d12/E/d6/d4/d13

B 16 0.62 C/A/B/G/H/J/I
P 17 0.79 C/A/B/G/H/J/I
95% 17 0.79 C/A/B/G/H/J/I
90% 17 0.79 C/A/B/G/H/J/I
85% 17 0.79 C/A/B/G/H/J/I
80% 16 0.62 C/A/B/G/H/J/I
75% 16 0.62 C/A/B/G/H/J/I

34*(12) R / 0.20 C/A/B/F/K/E/D/G/H/J/L/I
D 23 1 Nothing
L 4 0.13 C/A/B/F/K/E/D/G/H/J/L/I/d6

B 11 0.21 C/A/B/F/K/E/D/G/H/J/L/I
P 23 1 Nothing
95% 22 0.93 C
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approach can be explained by the fact that often the lowest ME,
which is used here, seriously underestimated the error on an effect
(see Table 3), leading to many non-significant factors that are incor-
rectly considered significant. It can be concluded that considering
90% 15 0.52 C/A/B/F/K/E/D/G
85% 15 0.52 C/A/B/F/K/E/D/G
80% 14 0.46 C/A/B/F/K/E/D/G/H/J
75% 14 0.46 C/A/B/F/K/E/D/G/H/J

Since no responses occurred with about 50% significant effects,
wo such situations (R6 and R7) were created, by introducing

and 6 significant effects on responses (Asfg) and (%RSDg),
espectively. These responses R6 and R7 with 5/11 × 100 = 45% and
/11 × 100 = 55% significant effects, respectively, were then also
onsidered. To create these responses, some dummy effects were
eplaced by significant effects. It also should be noticed that the
esulting responses have no physical meaning anymore.

In Table 4, the experimental design, the considered responses,
nd the effects are given for this data set.

. Results and discussion

.1. Evaluation of the different approaches

In Table 3, for each data set (1 till 9) and each response, the
esults are presented for the reference criteria (R), the algorithm
f Dong (D), and the alternative approaches (L, B, P, 95-90-85-
0-75%). For each approach, the number of factors included in
he estimation of s1, the critical effect relative to that of Dong
Ecrit/Ecrit,D) both at � = 0.05, and the effects considered significant
t � = 0.05 (E�=0.05), are given.

The algorithm of Dong (D) usually works fine in cases where
he effect sparsity principle is fulfilled. For responses 2 till 6, 8
ill 12, 15 till 18, 20 till 21, 24 till 27, and 33, the same con-
lusions on effects significance are made as when using the
eference approaches (half-normal probability plot and/or the neg-
igible effects) (Table 5). Compared to the reference criteria, false
egative results are obtained for responses 14 (2/11 × 100 = 18%
ignificant effects), 19 (2/11 × 100 = 18% significant effects), 30

1/15 × 100 = 6.7% significant effects), 31 (2/15 × 100 = 13% signifi-
ant effects), and 32 (4/23 × 100 = 17% significant effects). In these
ases, the algorithm of Dong already seems to slightly overesti-
ate the experimental error, leading to a somewhat higher Ecrit,D,

ompared to Ecrit,R (Tables 3 and 5).
F
e
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In 8 out of the 11 cases where the effect sparsity principle was
iolated and where thus about 50% of the effects are significant,
he algorithm of Dong fails in determining the significant effects
orrectly. This is the case for responses 1, 7, 13, 22, 23, 28, 29, and
4. In these situations, many false negative results are obtained
elative to the reference criteria (Table 5).

For all 34 responses, 45 effects less than with the reference(s)
re indicated as significant. This is due to the fact that Dong overes-
imates the experimental error, leading to a too high Ecrit,D, because
number of significant effects are included in the error estimate

Tables 3 and 5, Ecrit,D > Ecrit,R).
For the first alternative approach (L), the plots of ME as a func-

ion of the number of included effects (m) in the estimation of s1
sually have a profile similar to Fig. 1, i.e. a profile that shows a
inimum. Only in one situation, i.e. response 21, the plot does not

how a minimum, but ME continuously increases with the num-
er of included effects. This is probably caused by the fact that the
mallest effect (|EX| = 0.00008) is much smaller than all other (range
EX| = 0.004–0.411).

For designs with N = 8, this approach was found appropriate in
hose situations where the number of significant effects approaches
0%. For example, all significant effects on responses 1, 7, 12, and
3 are correctly found, while the algorithm of Dong only indicated
hem correctly for response 12 (Table 3). However, for situations
here the number of significant effects is far below 50%, this

pproach leads to a relatively high number of false positive results.
his is, for example, the case, amongst others, for response 11,
here besides one significant effect, three non-important effects

re incorrectly indicated as significant.
For larger designs (N = 12, 16, 24), this approach also leads to

any false positive results for situations where the number of sig-
ificant effects is low. This is, for example, the case for responses 15,
4, and 32, amongst others. In situations where the effect sparsity
rinciple is violated, this approach indicates the significant effects
orrectly. For example, all significant effects on responses 21, 22,
3, 28, 29, 33 and 34 were found important, while Dong only indi-
ates them correctly for responses 21 and 33. However, additional
alse positive results are found in these situations. For example, for
esponses 21, 22, 23, 28, 33, and 34, some non-important effects are
lso considered significant (Table 3).

The large number of false positive results when using this
ig. 1. Margin of Error (ME�=0.05) plotted as a function of the number (#) of included
ffects in the estimation of s1 for response 13.
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Table 4
Application data set: 12-experiments Plackett-Burman design to evaluate the effects of six real factors (A till F) and five dummies (d1 till d5), on seven responses, i.e. the %
relative standard deviations (%RSD) of vigabatrin (%RSDv) and gabapentin (%RSDg) concentrations, the resolution between the vigabatrin peak and its nearest neighbour peak
(Rsv), the asymmetry factor of the gabapentin peak (Asfg), the plate number of gabapentin ((N/mm)g), and the simulated responses R6 and R7 .

Exp Factors Responses

A B C D E F G = d1 H = d2 I = d3 J = d4 K = d5 %RSDv Rsv %RSDg Asfg (N/mm)g R6 R7

1 1 1 −1 1 1 1 −1 −1 −1 1 −1 7.0 1.23 0.8 1.54 59.6 1.50 −0.7
2 1 −1 1 1 −1 1 1 1 −1 −1 −1 0.8 1.14 0.3 1.52 68.8 1.56 −1.2
3 −1 −1 1 −1 1 1 −1 1 1 1 −1 1.0 1.33 1.0 1.41 71.8 1.37 1.5
4 1 −1 −1 −1 1 −1 1 1 −1 1 1 0.6 1.51 0.9 1.42 63.4 1.42 −1.6
5 1 1 1 −1 −1 −1 1 −1 1 1 −1 1.8 1.22 1.3 1.56 63.7 1.60 0.8
6 1 −1 1 1 1 −1 −1 −1 1 −1 1 1.4 1.12 1.6 1.38 75.7 1.34 2.1
7 −1 1 1 −1 1 1 1 −1 −1 −1 1 1.5 1.92 0.8 1.41 68.0 1.41 −0.7
8 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1.5 1.99 0.5 1.41 77.0 1.41 −1.0
9 −1 −1 −1 1 −1 1 1 −1 1 1 1 0.6 1.26 0.8 1.42 83.1 1.46 2.3

10 −1 1 1 1 −1 −1 −1 1 −1 1 1 1.3 1.38 4.0 1.44 73.9 1.44 6.5
11 −1 1 −1 1 1 −1 1 1 1 −1 −1 5.0 1.02 6.9 1.48 64.7 1.48 11.4
12 1 1 −1 −1 −1 1 −1 1 1 −1 1 3.7 2.06 2.5 1.48 64.6 1.48 2.0

Responses Effects

%RSDv 0.73 2.40 −1.77 1.00 1.13 0.50 −0.93 −0.23 0.13 −0.27 −1.33
Rsv −0.10 0.08 −0.16 −0.48 −0.15 0.12 −0.17 −0.05 −0.19 −0.22 0.22
%RSDg −1.10 1.87 −0.57 1.23 0.43 −1.50 0.10 1.63 1.13 −0.63 −0.03
Asfg 0.055 0.058 −0.005 0.015 −0.032 0.015 0.025 0.005 −0.002 0.018 −0.062
(N/mm)g −7.12 −7.55 1.58 2.88 −4.65 −0.42 −1.82 −3.32 2.15 −0.55 3.85
R6 0.055 0.058 −0.005 0.015 −0.072 0.015 0.065 0.005 −0.002 0.018 −0.062
R7 −3.10 2.87 −0.57 3.23 0.43 −2.50 0.10 2.63 3.13 −0.63 −0.03

Table 5
Number of significant effects (# Sign) from the half-normal probability plot (HNPP), and from the critical effects based on negligible effects (NE), i.e. interaction (I) or dummy
(d) effects, from Dong (D) and from the 75% approach (75%), for the different responses. For the D and 75% approaches, the number of false positive (# FP) and false negative
(# FN) results, relative to HNPP and/or NE, are also indicated. * see Table 3.

Response HNPP NE D 75%

# Sign I or d # Sign # Sign # FP # FN # Sign # FP # FN

1* 3 / / 2 0 1 3 0 0
2 1 / / 1 0 0 1 0 0
3 2 / / 2 0 0 3 1 0
4 1 / / 1 0 0 1 0 0
5 0 / / 0 0 0 0 0 0
6 1 / / 1 0 0 1 0 0

7* 3 / / 1 0 2 3 0 0
8 2 I 2 2 0 0 2 0 0
9 2 I 2 2 0 0 2 0 0

10 0 I 0 0 0 0 0 0 0
11 1 I 1 1 0 0 1 0 0

12* 3 I 3 3 0 0 3 0 0
13* 4 I 4 0 0 4 4 0 0
14 2 d 2 0 0 2 0 0 2
15 1 d 1 1 0 0 1 0 0
16 1 d 1 1 0 0 1 0 0
17 1 d 2 2 0 0 2 0 0
18 1 d 1 1 0 0 5 4 0
19 1 d 2 1 0 1 1 0 1
20 1 d 1 1 0 0 3 2 0

21* 5 d 5 5 0 0 5 0 0
22* 5 d 5 1 0 4 4 0 1
23* 5 d 5 1 0 4 5 0 0
24 0 d 0 0 0 0 0 0 0
25 3 d 3 3 0 0 3 0 0
26 2 d 2 2 0 0 2 0 0
27 1 d 1 1 0 0 1 0 0

28* 6 d 6 2 0 4 6 0 0
29* 8 d 8 0 0 8 8 0 0
30 0 I 1 0 0 1 3 2 0
31 1 I 2 1 0 1 1 0 1
32 2 d 4 3 0 1 6 2 0

33* 7 d 7 7 0 0 7 0 0
34* 12 d 12 0 0 12 10 0 2∑

= 0
∑

= 45
∑

= 11
∑

= 7
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he lowest ME as critical effect was not found appropriate to deter-
ine effects significance.

The second approach (B), i.e. evaluating visually the half-normal
robability plot, was more appropriate to determine the number of
ffects to include in the calculation of s1. When all effects deviating
rom the non-significance straight line through zero are discarded,

ore accurate estimations of the critical effects are obtained, also
or situations with about 50% significant effects and for larger
esigns. In all 11 responses with about 50% significant effects, the

mportant effects are correctly indicated. In contrast with the algo-
ithm of Dong (D), no false negative results are obtained using this
pproach (B), and compared to the first approach (L), this method
B) usually also leads to less false positive results. The observed
s not unexpected as the graphical interpretation was part of the
eference approaches.

However, this approach also has some drawbacks. The inter-
retation of the half-normal probability plot is not always
traightforward, i.e. it is not always evident to properly draw the
traight line through the non-significant effects. Occasionally, dif-
erent lines could be chosen, resulting in considerably different
onclusions. In Table 3, it is indicated as B (1) and B (2) when the
ecision was based on two different lines. This was, for example, the
ase for response 23. When using B (1), four of the five significant
ffects are considered non-significant. On the other hand, when
sing B (2), all five effects are considered significant. The number
f effects included in the calculation of s1 thus depends on a graph-

cal, i.e. a subjective, approach, which hardly can be generalized as
statistical or mathematical one can.

Therefore, the search for a better methodology was continued
nd other approaches were explored. From these possibilities (third
nd fourth approaches), the best result, i.e. that having the critical
ffect corresponding best to the reference approaches, was usually
btained when calculating the median based on the 75% lowest
bsolute effects, i.e. when using s0 = 1.5 × median|E75%|.

In situations with about 50% significant effects, the third
pproach (P) does not always correctly indicate the significant
ffects, and false negative results are obtained. This is the case in 7
ut of the 11 situations, i.e. for responses 1, 13, 22, 23, 28, 29, and
4. The reason for the observed is that in the above situations, the
pproach usually still leads to an overestimated error, and thus a
igh critical effect (Table 3).

When using the fourth approach, different numbers of effects
ncluded for s0 were evaluated. When using the 95, 90, 85, or 80%
mallest effects in situations with about 50% significant effects,
ften effects still were incorrectly considered non-significant, and
hus false negative results are obtained (Table 3). This is seen
or 7 out of the 11 cases, i.e. for responses 1, 13, 22, 23, 28, 29,
nd 34.

The use of s0 = 1.5 × median|E75%| (75% approach) leads to more
orrect decisions on the effects significance than the algorithm
f Dong and the other alternative approaches. Especially in situ-
tions where the number of significant effects approaches the 50%
imit, this adapted algorithm is better capable of correctly identi-
ying the significant effects. Less effects are incorrectly considered
on-significant and thus less false negative results are obtained.
ith this approach, the important effects are correctly indicated
ithout the occurrence of any false positive results in 9 out of the

1 responses with about 50% significant effects, i.e. for responses
, 7, 12, 13, 21, 23, 28, 29, and 33. For the two other cases, i.e.
esponses 22 and 34, this approach allows determining all signifi-

ant effects, except one (of five) and two (of twelve), respectively.
owever, although in situations where the effect sparsity principle

s violated, only some rare false negative results are obtained, much
ore effects are correctly indicated as significant, compared to the

lgorithm of Dong (see Tables 3 and 5).
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On the other hand, also in situations where the number of sig-
ificant effects is far below 50%, the adapted algorithm is capable
f identifying the significant effects, and usually without leading to
any false negative or false positive results. Compared to the refer-

nce criteria, false negative results are obtained only for responses
4, 19, and 31. However, the algorithm of Dong does not indicate
hese effects as significant either.

Thus, in general, much less false negative results are obtained
sing this approach than when using the algorithm of Dong, i.e. 7
ersus 45 (Tables 3 and 5).

False positive results are seen for responses 3, 18, 20, 30, and 32.
ompared to the algorithm of Dong, this approach thus leads to a
omewhat higher occurrence of false positive results, i.e. 11 versus

(Tables 3 and 5). However, from a practical point of view, this
ituation is much less problematic than when ignoring significant
ffects. Here one will react when in fact it is not necessary, while in
he case of false negative results, one should react but does not.

In summary, the algorithm of Dong leads to many false nega-
ive results, especially in cases where the effect sparsity principle
s violated. The first approach (L or using the lowest ME) indicates
ll significant effects correctly, but usually way too much false posi-
ive results are obtained. Although the second approach (B or visual
nspection of the half-normal probability plot) correctly indicates
ll significant effects, with much less occurrence of false positive
esults, this approach remains based on a graphical, thus a sub-
ective, interpretation, and is therefore less recommended. When
sing the third approach (P) or some of the fourth approaches (95-
0-85-80%), still too many false negative results are again obtained.
he fourth approach based on the 75% lowest effects leads to the
est decisions on effects significance. Compared to the algorithm
f Dong, much less false negative results are obtained. A drawback

s that somewhat more false positive results are found, but as men-
ioned above, this is less problematic than the false negative results.

Therefore, when a Dong-like approach is used to identify signif-
cant effects, e.g. in minimal screening designs, we suggest, based
n the results of the case studies, to use the adapted algorithm,
here the 75% lowest absolute factor effects are used to calculate

he initial error estimate s0, i.e. s0 = 1.5 × median|E75%|.

.2. Application

In [18], the robustness of a high-performance liquid chromato-
raphic method to analyze three anti-epileptic drugs, pregabalin,
abapentin, and vigabatrin, in human serum was examined using
he 12-experiments Plackett-Burman design, presented in Table 4.
he results of the robustness test were treated with the above
roposed methodology to determine the effects significance. In
able 6, the results are presented for the algorithm of Dong and
he approach using s0 = 1.5 × median|E75%|, for each response of the
pplication data set. As reference criterion, also the critical effects
ased on the dummy effects are presented.

For the responses Rsv, %RSDg, and (N/mm)g, the same results
ere obtained for both approaches (D and 75%). Compared to

he approach based on the dummy effects (d1-2-3-4-5), the same
onclusions were drawn, except for (N/mm)g, where two effects
EB = −7.55 and EA = −7.12) are considered borderline significant
Ecrit = 6.71). For Dong (s0 = 4.33, ME�=0.05 = 8.76) and the 75%
pproach (s0 = 2.98, ME�=0.05 = 7.63), these two effects are consid-
red non-significant, though in the latter case it is borderline. Thus,
he effects of B and A are to be considered borderline cases.
For the other responses, i.e. %RSDv, Asfg, R6 and R7, differ-
nt results were obtained for both approaches (D and 75%).
hey are further considered in more detail. For %RSDv, the 75%
pproach indicates factor B (EB = 2.40) as borderline significant
s0 = 0.93, ME�=0.05 = 2.11), while Dong considers it as borderline
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Table 6
Evaluation of the proposed methodology (75% approach) to determine effects sig-
nificance, and comparison with the critical effects (Ecrit) based on dummy effects
and on the algorithm of Dong. For symbols used, see Tables 3–5. The results are
presented for the responses of the application data set.

Response Approach # Ecrit E˛=0.05

%RSDv NE (d1-2-3-4-5) / 1.92 B
D 11 2.55 Nothing
75% 10 2.11 B

Rsv NE (d1-2-3-4-5) / 0.47 D
D 11 0.46 D
75% 11 0.46 D

%RSDg NE (d1-2-3-4-5) / 2.40 Nothing
D 11 2.42 Nothing
75% 11 2.42 Nothing

Asfg NE (d1-2-3-4-5) / 0.080 Nothing
NE (d1-2-3-4) / 0.044 d5/B/A
D 11 0.075 Nothing
75% 9 0.056 d5/B

(N/mm)g NE (d1-2-3-4-5) / 6.71 B/A
D 11 8.76 Nothing
75% 10 7.63 Nothing

R6 NE (d2-3-4) / 0.035 E/G/K/B/A
D 11 0.095 Nothing
75% 7 0.056 E/G/K/B
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d
vides good decisions on the importance of the estimated effects.
In cases where the number of significant effects approaches 50%,
the approach based on s0 = 1.5 × median|E75%| leads to more accu-
rate results on the effects significance than the original algorithm
of Dong, i.e. less false negative results are obtained. On the other
7 NE (d1-4-5) / 1.18 D/I/A/B/H/F
D 11 4.79 Nothing
75% 5 1.10 D/I/A/B/H/F

on-significant (s0 = 1.40, ME�=0.05 = 2.55). From the half-normal
robability plot (not shown), B does not clearly deviate from
he straight line of the non-significant effects. When using the
ummies (d1-2-3-4-5), B is also considered borderline significant
Ecrit = 1.92). Thus, the effect of B is a borderline case.

For Asfg, the algorithm of Dong does not indicate any effect as
ignificant (s0 = 0.028, ME�=0.05 = 0.075), while the 75% approach
onsiders d5 (Ed5

= −0.062) and B (EB = 0.058) as borderline signif-
cant (s0 = 0.023, ME�=0.05 = 0.056) and A (EA = 0.055) as borderline
on-significant. When evaluating the half-normal probability plot
Fig. 2a), factors d5, B, and A deviate from the straight line. From
he critical effect based on the dummies (d1-2-3-4-5) (Ecrit = 0.080),
o effects are considered significant. However, since the effect of
he fifth dummy (d5) is the largest, it should be excluded. The
ritical effect based on four dummies (d1-2-3-4) was Ecrit = 0.044.
hen factors d5, B, and A are considered significant. It might be
oncluded that in this situation, the algorithm of Dong includes
oo many effects to estimate s1, thus overestimating ME�=0.05 (see
able 6) and indicating too few effects as significant. The alterna-
ive approach leads to more correct decisions on the significance,
ecause here the two highest effects are excluded from the s1 error
stimation, resulting in a lower ME�=0.05. These observations con-
rm the conclusions from the earlier case studies.

For the simulated responses, R6 and R7, which are in the context
f this paper most interesting, the number of significant effects
pproaches 50%. The algorithm of Dong incorrectly indicates no
ffects as being significant, since s0 = 0.028, ME�=0.05 = 0.095 and
0 = 3.75, ME�=0.05 = 4.79 for R6 and R7, respectively (Table 6). The
alf-normal probability plots for these two responses (Fig. 2b and
) clearly indicate the presence of important effects, which are
bviously deviating from the non-significant effects. For R6, fac-
ors E, G, K, B, and A are important, while for R , factors D, I, A,
7

, H, and F are. Their effects are also considered significant when
valuating the critical effects based on the dummies (Ecrit = 0.035
nd Ecrit = 1.18 for R6 and R7, respectively) (Table 6). When using
he 75% approach, four of the five significant effects are correctly

F
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ndicated for response R6 (s0 = 0.023, ME�=0.05 = 0.056) and all six
or R7 (s0 = 0.90, ME�=0.05 = 1.10). Thus, in these situations, the new
pproach again leads to much less false negative results than the
lgorithm of Dong. The latter included all 11 effects for the s1 error
stimation, while the alternative methodology only 7 and 5 for R6
nd R7, respectively, leading to lower and more accurate estima-
ions of the error and the ME�=0.05 (Table 6). These results again
onfirm the earlier case studies conclusions.

In general, it can be concluded that the new methodology to
etermine the effects significance from a screening design pro-
ig. 2. Half-normal probability plot of the 11 effects on the responses (a) Asfg, (b)
6 , and (c) R7 (application data set, Table 4). The straight line of the non-significant
ffects is drawn.
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and, in case of effect sparsity, the 75% approach usually leads to
he same results as the algorithm of Dong.

. Conclusions

In this paper, a new methodology to determine significance of
ffects, estimated from a screening design, was developed starting
rom the algorithm of Dong. It is suggested to apply the 75% lowest
bsolute factor effects to calculate the initial error estimation s0,
.e. s0 = 1.5 × median|E75%|.

This new methodology was compared with the algorithm of
ong. Especially in situations with about 50% significant effects,
ong includes too many effects in the s1 error estimation, leading

o many important effects incorrectly considered non-significant,
.e. false negative results. In these situations, the new methodology
ncludes a more appropriate number of effects, leading to more
ccurate estimations of the error. In situations where effect spar-
ity occurs, the new methodology usually leads to the same results
s the original algorithm of Dong, although a somewhat higher
ccurrence of false positive results is observed.

This new methodology was then successfully applied on a bio-
nalysis application data set. The results confirmed those found
ith the earlier case studies.

The new methodology is especially interesting to be applied in
inimal screening designs, i.e. situations where no or too few dum-
ies or negligible interaction effects can be estimated to be used

n the statistical interpretation of the effects.
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