Journal of Chromatography B, 877 (2009) 2252-2261

Contents lists available at ScienceDirect

JOURNAL OF CHROMAIGGRAPHY B

Journal of Chromatography B

journal homepage: www.elsevier.com/locate/chromb

Identification of significant effects from an experimental
screening design in the absence of effect sparsity™

B. Dejaegher, A. Durand, Y. Vander Heyden*

Analytical Chemistry and Pharmaceutical Technology (FABI), Pharmaceutical Institute, Vrije Universiteit Brussel — VUB, Laarbeeklaan 103, 1090 Brussels, Belgium

ARTICLE INFO ABSTRACT

Article history:

Received 7 August 2008
Accepted 3 October 2008
Available online 18 October 2008

This paper describes an attempt to derive a new methodology to determine the significance of effects
estimated from a screening design, starting from the algorithm of Dong but overcoming its draw-
backs. Especially in situations where effect sparsity does not occur and the number of significant effects
approaches 50%, the currently often applied algorithm of Dong leads to many important effects incorrectly
considered non-significant, i.e. to false negative results. For these situations, a new methodology is recom-
mended. Based on the algorithm of Dong, several alternative approaches were explored and compared.
From all approaches, the one using the 75% lowest absolute factor effects to calculate the initial error
estimation sp, i.e. so = 1.5 x median|E7sy|, resulted in the highest number of correct decisions on effects
significance. After its definition, the new methodology was tested on a bioanalysis application data set.
This study confirmed the earlier conclusions on literature and semisimulated data. The new methodology
is especially interesting to be applied in minimal screening designs, for which other error estimates (e.g.
based on interaction or dummy effects) cannot be applied.
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1. Introduction

Extensive method validation is often required, especially in
pharmaceutical industries, in order to meet the strict regulations
set by the regulatory bodies. Robustness testing is part of such val-
idation. The ICH (International Conference on Harmonisation of
Technical Requirements for the Registration of Pharmaceuticals for
Human Use) guidelines define robustness as: “The robustness of an
analytical procedure is a measure of its capacity to remain unaffected
by small, but deliberate variations in method parameters and provides
an indication of its reliability during normal usage.”[1].

In the evaluation of method robustness, two-level screening
designs, such as fractional factorial (FF) or Plackett-Burman (PB)
designs, are usually applied [2,3]. These designs are also often used
to identify the most important factors during the first phase of
method optimization [4]. They allow screening a relatively high
number of factors f in a rather small number of experiments
(N>f+1)][2,3]. FF designs perform only a fraction of a full factorial
design. The number of experiments is a power of two, and depend-
ing on the design, two-factor interaction effects can or cannot be
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estimated unconfounded from the main effects [2,3]. PB designs
are factorial designs that examine up to N — 1 factors in N (multiple
of four) experiments [2,3,5]. When less than N — 1 factors are to be
examined, the remaining PB design columns are defined as dummy
factor columns [3].

In robustness testing, two-factor interaction or dummy factor
effects estimated from FF and PB designs, respectively, are assumed
to be negligible, and can therefore be used in the statistical interpre-
tation of the estimated factor effects (see further) [3]. In the case of
screening during optimization, the negligibility cannot be assumed
anymore and these effects should not be used to draw decisions on
the factor effects significance.

To analyze screening design results, first the factor effects are
estimated [2,3]. Afterwards usually an approach is selected to iden-
tify the important or significant effects. Both graphical, such as
normal [2,3,6] or half-normal [2,3,7] probability plots, and statis-
tical methods can be used. Most statistical methods use the t-test,
where the t statistic requires an estimation of error. The error esti-
mation can be made in several ways, e.g. using the variance of
replicated experiments (e.g. at center point level, or duplicated
design experiments) [2,3], from a priori declared negligible effects
(interaction or dummy effects) [2,3], or from effects defined a pos-
teriori negligible by the algorithms of Lenth [8] or Dong [3,9].

Two types of erroneous decisions can occur. A false positive
result is obtained when a non-significant effect is considered sig-
nificant, and a false negative result when a significant effect is
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indicated as being non-significant. The latter is considered worst,
seen from a practical point of view.

Needless to say, it is frequently desired to reduce time and costs
when performing a screening or a robustness test. For this pur-
pose, often minimal designs are applied, in which the factors are
examined in the smallest design possible. These designs do not con-
tain enough interactions or dummy factors unconfounded with the
main effects, to estimate the error properly. The use of the algorithm
of Dong is then recommended [3]. However, the algorithms of Lenth
and Dong require effect sparsity, i.e. «50% significant effects. In sit-
uations where about 50% of the effects are significant, the algorithm
of Dong becomes incapable to indicate the significant effects cor-
rectly [10]. The algorithm of Dong then is overestimating the critical
effect, resulting in a situation where significant effects incorrectly
are considered non-significant. In these situations, it is advised to
perform a design that allows estimating the effects of enough a
priori declared negligible terms to estimate the error or the crit-
ical effect [10]. However, a screening design that complies to this
condition might still require rather many experiments, especially
when a high number of factors needs to be evaluated.

Therefore, in this study, it was tried to adapt the algorithm of
Dong, in order to obtain a more accurate estimation of the critical
effect in all situations, especially in those with about 50% signifi-
cant effects. Nine data sets or designs were taken from literature
[7,11-17], with different numbers of examined factors, responses,
and design experiments (N =8, 12, 16, 24). The designs were either
FF or PB designs. Eleven cases represented situations where about
50% of the considered effects are significant. These cases were either
taken from the literature, or partially simulated starting from the
literature data. Different approaches to adapt the algorithm of Dong
were considered. A new approach was proposed to obtain a more
accurate estimation of the critical effect. This new approach was
then applied to a bioanalysis data set, taken from literature [18],
containing the robustness study results of a high-performance lig-
uid chromatographic (HPLC) method to analyze three anti-epileptic
drugs, pregabalin, gabapentin, and vigabatrin, in human serum.

2. Theory

Factor effects in two-level screening designs are calculated as
follows [2,3]

Y -2V
Ex = N—/2 (1)

where E is the effect of factor X, > Y(+) and Y _Y(-) are the sums
of the responses where factor X is at (+) or (—) level, respectively,
and N is the number of design experiments.

In the statistical interpretation, a t-test statistic [2,3] is calcu-
lated to evaluate whether a given Ey is significantly different from
zero, i.e. factor X has a significant effect.

t [Ex|
(SE)e

< tap (2)

where (SE). is the standard error of the effect.

The calculated test statistic (Eq. (2)) is compared with a tabu-
lated t-value, t;,;,. The number of degrees of freedom (df) for (SE)e
and the applied significance level a will determine t,,. An effect
with a t > t,}, is considered significant, while t < t;,;, suggests a non-
significant effect.

The algorithm of Dong [3,9] is an approach to estimate the error
(SE)e. This algorithm calculates from an initial estimate of error
based on all effects, sg (Eq. (3)), a final estimation of the stan-
dard error, s; (Eq. (4)), based on the effects that are considered not
important. The estimated s; allows determining a critical effect for

a response, E, called the Margin of Error (ME) (Eq. (5)).

sg = 1.5 x median|E;] (3)

$1 =1/m’1ZEj2 (4)

where E; is the effect of factor i, E; an effect that in absolute value
is smaller than or equal to 2.5%sg, and m the number of such
effects. The elimination of effects exceeding 2.5%sg is derived from
P(|Ex|>2.5%sg)~0.01.

Ecrie = ME = t(1_(¢/2), df) X 51 & |Ex] (5)

In Eq. (5), df=m and usually o =0.05. Values of |[Ex| that are larger
than or equal to ME are considered significant. For the above-
mentioned minimal designs, the algorithm of Dong is appropriate
to determine significant effects, except in situations where about
50% of the considered effects is significant [3,10]. The algorithm of
Dong is further in the text indicated as approach D.

Because of the above drawback, in this study, several approaches
were considered to adapt the algorithm of Dong. The first approach
does not take into account sy to determine the number of effects
m to include in the estimation of s;. The approach simply con-
sists of calculating the Margins of Error for all different numbers
of effects, from 1 to i, included in the estimation of s;. The consecu-
tively included effects are those obtained after sorting and starting
with the absolute smallest. Then, the MEs are plotted as a function
of the number of included effects. In this approach, the lowest ME
at a given significance level « is then considered the critical effect.
This approach is indicated as L further on.

The second approach also does not calculate sy to determine the
number of effects m to include in the estimation of s;. Here a half-
normal probability or Birnbaun plot is drawn and visually evaluated
to decide on the number of effects, mg, to include in the estimation
of s1. More information concerning the construction and interpre-
tation of these plots can be found in [2,3,7]. Non-significant effects
tend to fall on a straight line through zero, whereas significant
effects deviate from this straight line. In this approach, m in Eq.
(4) is replaced by mg, and E; by Ep, where Ep represent the mg low-
est absolute effects, which were considered non-significant from
the plot, thus s = / mg1 > Eﬁ. The corresponding ME is then cal-
culated with Eq. (5), where df = mg. This approach is indicated as B
further on.

The third approach, indicated as P, replaces E; in Eq. (4) by Ep,
and m by mp, where Ep is an effect that in absolute value is smaller
than or equal to 2.0%sy, and mp the number of such effects, thus s; =
A\ /ml;1 Z Elz,. In this approach, the elimination of effects exceeding
2.0%sg is derived from P(|Ex| > 2.0*sg) ~ 0.05. The corresponding ME
is then calculated with Eq. (5), where df = mp.

Whereas the first three approaches focus on adapting the final
estimation of error sq, a fourth approach reconsiders the initial esti-
mate of error sg. To estimate sg, the algorithm of Dong uses the
median of all absolute effects. In this fourth approach, the median
is arbitrarily calculated from the 95%, 90%, 85%, 80%, or 75% lowest
absolute effects. In Eq. (3), E; is then replaced by Ey, which rep-
resents the considered percentage of lowest absolute effects, thus
so = 1.5 x median|Ey|. This approach is indicated as 95, 90, 85, 80
or 75%, depending on the percentage included effects. In Table 1,
the numbers of included and excluded effects for sq are given for
different designs and for different percentages of lowest absolute
effects. The corresponding s; estimation is then made with Eq. (4),
and the corresponding ME with Eq. (5).

The results of these four approaches were evaluated critically
for a number of case studies, and are discussed further.
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Table 1

Numbers of included (# included) and of excluded (# excluded) effects for so,
considering different designs and percentages of lowest absolute effects (95%-90%-
85%-80%-75%). N =number of design experiments.

N ¥4 # included # excluded
8 95-90-85-80 6 1
75 5 2
12 95-90 10 1
85-80 9 2
75 8 3
16 95-90 14 1
85 13 2
80 12 3
75 1 4
24 95 22 1
90 21 2
85 20 3
80 18 5
75 17 6

3. Experimental
3.1. Data sets to test the new approaches

The nine data sets applied in [10] were also used here in order to
study the above approaches to determine the effects significance
from a screening design. These nine data sets were taken from
literature [7,11-17] and resulted from the use of screening designs
during robustness testing (data sets 1 till 7) or method optimiza-
tion (data sets 8 and 9). The numbers of design experiments were
8 (data sets 1 till 4), 12 (data sets 5 and 6), 16 (data sets 7 and 8)
or 24 (data set 9). Both fractional factorial (data sets 1, 2, 4, and
8) and Plackett-Burman (data sets 3, 5, 6, 7, and 9) designs were
considered. Table 2 gives an overview of the nine data sets. The
numbers of design experiments (N), of examined factors (f), of
interactions (I) (estimated unconfounded with the main effects)
or dummy (d) effects, and of responses (r) are given for each data
set.

Amongst these Zr=34 responses, eleven represent situations
where about 50% of the effects are significant (Table 3 ). These
cases were either taken from the literature or partially simulated.
For data sets 1 and 3 (both N =8), one response with 3/7 x 100 =43%
significant effects, i.e. responses 1 and 7, respectively, was retained
and evaluated. For data set 6 (N=12), three responses (21-23)
were retained, each with 5/11 x 100=45% significant effects. For
data sets 4 (N=8), 7 (N=16), and 9 (N =24), such responses were
partially simulated [10]. For data set 4 (N =8), two partially simu-

Table 2

lated responses (12 and 13) were created in which 3/7 x 100=43%
and 4/7 x 100=57% significant effects, respectively, occur. For data
set 7 (N=16), two partially simulated responses (28 and 29)
were created with 6/15 x 100=40% and 8/15 x 100 = 53% significant
effects, respectively. For data set 9 (N=24), two partially simu-
lated situations (33 and 34) were created with 7/23 x 100=30% and
12/23 x 100=52% significant factor effects, respectively.

The above numbers of significant effects, that were used as ref-
erence further in the text, were obtained from a graphical (data sets
1till9) and, where possible, an alternative statistical (data sets 4 till
9) interpretation of the data. Graphically, a half-normal probability
plot was drawn, whereas statistically critical effects were calculated
based on a priori considered negligible effects, i.e. interactions or
dummies for FF or PB designs, respectively. More explanation and
the results of both reference approaches (R) can be found in [10]
and Table 3. In case these two methods lead to a different result,
the result from the negligible effects was used.

For the exact design set-ups of the data sets, we refer to [10],
where for each data set, the factors, the experimental design, the
responses, the effects on each response, and the critical effects,
estimated from the algorithm of Dong, are presented. For original
information regarding the nine data sets, we refer to [7,11-17].

The ratio Eyj¢/Ecric,p in Table 3 allows situating the critical effect
of a given approach relative to that obtained by the algorithm of
Dong. When E;/Eqirp <1 the alternative approach uses a critical
effect that is smaller than that used by Dong’s approach, i.e. some
larger effects were excluded from the error estimation.

3.2. Application data set

The best new approach to determine the effects significance
from a screening design set-up was subsequently applied to analyze
the results of an application data set [18].

The robustness of a high-performance liquid chromato-
graphic method to analyze three anti-epileptic drugs, pregabalin,
gabapentin, and vigabatrin, in human serum, was tested in [18].
First the robustness of the chromatographic analysis was evalu-
ated, and secondly that of the sample preparation procedure. For
our study, the first part of the robustness study was retained. The
robustness of the chromatographic analysis was performed using a
12-experiments Plackett-Burman design. The effects of six factors
onseveral responses were evaluated. The retained responses for our
study were the % relative standard deviations (%¥RSD) of the vigaba-
trin (%¥RSDy) and gabapentin (%RSDg) concentrations, the resolution
between the vigabatrin peak and its nearest neighbour peak (Rsy),
the asymmetry factor of the gabapentin peak (Asfg), and the plate
number of gabapentin ((N/mm)g).

Overview of the data sets: the origin with the applied experimental design, the number of experiments (N), the number of examined factors (f), the number of interactions
(I) (estimated unconfounded with the main effects) or dummy effects (d), and the number of responses (r).

Data set Origin of case study Design N f d

1 Robustness test of chemical filtration process in an 27+ fractional factorial 8 -
industrial plant [7]

2 Robustness test of HPLC assay for triadimenol [11] 2673 fractional factorial 8 6 -

3 Robustness test of HPLC assay for ketoconazole in 7-factors 8-experiments PB 8 6 1
antidandruff shampoo [12]

4 Robustness test of HPLC assay for tetracycline and its 241 fractional factorial 8 4 -
impurities [13]

5 Robustness test of CE assay to separate enantiomers of 11-factors 12-experiments PB 12 8 3
praziquantel and warfarin [14]

6 Robustness test of HPLC assay for a drug substance [15] 11-factors 12-experiments PB 12 6 5

7 Robustness test of HPLC assay for formaldehyde in 15-factors 16-experiments PB 16 11 4
antidandruff shampoo [12]

8 Optimization of FIA assay for compounds with a secondary 262 fractional factorial 16 6 -
amine or an amide function [16]

9 Optimization of FIA assay for fluticasone propionate [17] 23-factors 24-experiments PB 24 8 15
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Evaluation of different approaches to determine effects significance; (#) number of
factors included in the estimation of sy, (Ecrit/Ecrit,p ) the critical effect relative to that
of Dong, both at a=0.05, and (Ex-0,05) the effects considered significant at o =0.05.
For the meaning of R, D, L, B, P, 95, 90, 85, 80, and 75%, see text. The results are
presented for each data set (a-i) and each response. * responses with about 50%
significant effects and (.. .) their number.

(a) Data set 1

Response Approach # Ecrit/Ecritp Ey-=0.05
1"(3) R / / F/A|C
D 5 1 F/A
L 4 0.54 F/A/C
B 4 0.54 F/A/C
P 5 1 F/A
95-90-85-80% 5 1 F/A
75% 4 0.54 F/A/C
(b) Data set 2
Response Approach # Ecrit/Ecritn Eg-0.05
2 R / / F
D 6 1 F
L 2 0.43 F/l;/C
B 6 1 F
P 6 1 F
95-90-85-80% 6 1 F
75% 6 1 F
3 R / / F/B
D 5 1 F/B
L 3 0.29 F/B/C
B 5 1 F/B
P 4 0.42 F/B/C
95-90-85-80% 4 0.42 F/B/C
75% 4 0.42 F/B/C
4 R / / E
D 6 1 E
L 3 0.68 E/A
B 6 1 E
P 6 1 E
95-90-85-80% 6 1 E
75% 6 1 E
(c) Data set 3
Response Approach # Ecrit/Ecritp Eg=005
5 R / / Nothing
D 7 1 Nothing
L 4 0.87 Nothing
B 7 1 Nothing
P 7 1 Nothing
95-90-85-80% 7 1 Nothing
75% 7 1 Nothing
6 R / / C
D 6 1 C
L 2 0.53 C/E[F
B 6 1 C
P 6 1 C
95-90-85-80% 6 1 C
75% 6 1 C
7(3) R / / B/C/A
D 5 1 B
L 3 0.34 B/C/A
B 4 0.40 B/C/A
P 4 0.40 B/C/A
95-90-85-80% 4 0.40 B/C/A
75% 4 0.40 B/C/A
(d) Data set 4
Response Approach # Ecrit/Ecritp Eg-005
8 R / 1.52 B/C
D 5 1 B/C
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(d) Data set 4
Response Approach # e e Eq=0.05
L 3 0.65 B/C
B 5 1 B/C
P 5 1 B/C
95-90-85-80% 5 1 B/C
75% 5 1 B/C
9 R / 1.21 B/C
D 5 1 B/C
L 3 0.94 B/C
B 5 1 B/C
P 5 1 B/C
95-90-85-80% 5 1 B/C
75% 5 1 B/C
10 R / 1.73 Nothing
D 7 1 Nothing
1L 4 0.76 Nothing
B 7 1 Nothing
P 7 1 Nothing
95-90-85-80% 7 1 Nothing
75% 7 1 Nothing
11 R / 1.09 C
D 6 1 C
L 2 0.39 C/B/I5/A
B 6 1 C
P 6 1 C
95-90-85-80% 6 1 C
75% 6 1 C
12%(3) R / 1.30 B/A/C
D 4 1 B/A/C
L 2 0.74 B/A/C
B 4 1 B/A/C
P 4 1 B/A/C
95-90-85-80% 4 1 B/A/C
75% 4 1 B/A/C
13%(4) R / 0.30 B/A/C/D
D 7 1 Nothing
L 3 0.30 B/A/C/D
B 3 0.30 B/A/C/D
P 7 1 Nothing
95-90-85-80% 7 1 Nothing
75% 3 0.30 B/A/C/D
(e) Data set 5
Response Approach # Ecrit/Ecritp Eg-0.05
14 R / 0.71 H/D
D 11 1 Nothing
L 3 0.36 H/D/F/d; /A
B 9 0.63 H/D
P 10 0.85 H/D
95-90% 11 1 Nothing
85-80% 11 1 Nothing
75% 11 1 Nothing
15 R / 1.21 B
D 10 1 B
L 3 0.36 B/A/C/D/d; [E/d>
B 10 1 B
P 10 1 B
95-90% 10 1 B
85-80% 10 1 B
75% 10 1 B
16 R / 0.95 D
D 1 1 D
L 2 0.29 D/E/C/A/F[ds/d2/d; /B
B 10 0.75 D
P 10 0.75 D
95-90% 11 1 D
85-80% 11 1 D
75% 11 1 D
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Table 3 (Continued )

(f) Data set 6 (g) Data set 7
Response Approach # i e Ey-0.05 Response Approach # Ecrit/Ecritp Eq-0.05
17 R / 0.81 F/D 25 R / 0.99 CJE/B
D 9 1 F/D D 12 1 C/E/B
L 2 0.11 F/D/B/A/d3/E[d2/d5 L 4 0.46 C/E/B/G/J/F[H
B 10 1.36 F/D B 12 1 C/E/B
P 9 1 F/D P 12 1 C/E/B
95-90% g 1 F/D 95-90% 12 1 C/E/B
85-80% 9 1 F/D 85% 12 1 CJE/B
75% 9 1 F/D 80% 12 1 C/E/B
18 R / 0.82 E 75% 12 1 C/E/B
D 10 1 F 26 R / 1.10 C/E
L 4 0.15 F/B/D/C/d4/ds D 14 1 CJE
B 10 1 F L 2 0.32 C/E/d>/B[H/d3/A[]
P 10 1 F B 13 0.75 C/E
95-90% 10 1 F P 13 0.75 C/E
85-80% 6 037 F/B/D/C/d4 95-90% 14 1 CJE
75% 6 0.37 F/B/D/C/d4 85% 13 0.75 CJE
80% 13 0.75 C/E
19 R / 0.88 F[C 75% 13 075 CE
D 10 1 F
L 3 0.51 F/C/D 27 R / 143 C
B 10 1 ¥ D 14 1 C
P 10 1 F L 3 0.57 C/E/d>
95-90% 10 1 B B 14 1 C
85-80% 10 1 F P 14 1 C
75% 10 1 F 95-90% 14 1 C
85% 14 1 C
& g /] o }'10 E 80% 14 1 c
L 2 0.21 F/A[d3/E[d2/d4/C 75% 14 1 ¢
B 10 1 F 28%(6) R / 0.63 A/D/C/HJE[]
P 9 0.81 FIA D 13 1 A/D
95-90% 10 1 F L 2 0.18 A/D/C/H/E[J/d2/B[d3
85-80% 9 0.81 F/A B 9 0.43 A/D/C/HJE[]
75% 8 0.58 F/A/d3 P 1 0.75 A/D/C/H
. 95-90% 13 1 A/D
217(5) g é (1"95 :%g;gg 85% 12 088 AJDJC
80% 11 0.75 A/D/C/H
L 1 0.03 A[F/D/C/B/d4/E/d5/d;[d> o
5 5 ; ArbicE 75% 9 0.43 A/D/C/HJE[]
P 6 1 AJF/D/C/B 29%(8) R / 0.40 F/C/A/H/E[}/D/G
95-90% 6 1 AJF/D/C/B D 15 1 Nothing
85-80% 6 1 AJF/D/C/B L 2 0.24 F/C/A/H/E[]/D/G
75% 6 1 AJF/D/C/B B 7 0.29 F/C/A/H/E[]/D/G
N P 15 1 Nothing
22(5) g g ?‘35 2/ C/D/B/E 95-90% 15 1 Nothing
85% 10 0.75 Nothing
L e domman oY am e
b ; 047 ens 75% 8 0.52 F/C/A/H/E/]/D/G
95-90% 7 0.47 A/C/D/B
85-80% 7 0.47 A/C/D/B Qe
75% 7 0.47 A/C/D/B Response Approach # Ecit/Ecritp Eu-005
23%(5) R / 0.40 E/D/F/B/C 30 R / 0.86 A
D 10 1 E D 15 1 Nothing
L 3 0.14 E/D/F/B/C/d4 L 5 0.19 A/JE/Is/Bflo/1; /D/lg
B (1) 10 1 E B(1) 15 1 Nothing
B(2) 5 0.19 E/D/F/B/C/d4 B(2) 9 0.38 AJE/[I5/B[Io[1;
P 10 1 B P 14 0.89 A
95-90% 9 0.83 E/D 95-90% 14 0.89 A
85-80% 7 0.51 E/DJF/B 85% 12 0.71 AJE[Is
75% 6 0.35 E/D/F/B/C 80% 12 0.71 A/E/[ls
75% 12 0.71 AJE[Is
(8) Dataset 7 31 R / 0.87 DJE
Response Approach # Ecrit/Ecritp Eq-0.05 D 14 1 D
2 R / 113 Nt ]l; i} ?-18 g/E/C/IS/B/Il [lo/1a/15/17[1s /A
D 15 1 Nothing P 14 1 D
L 2 0.14 C/E/q4/I/A/F/D/B/H/d3/d1 95-90% 14 1 D
B 15 1 Noth¥ng 85% 14 1 D
P i 15 1 Noth¥ng 80% 14 1 D
95-90% 15 1 Noth¥ng 75% 14 1 D
85% 15 1 Nothing
80% 15 1 Nothing
75% 15 1 Nothing
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Table 3 (Continued )
(i) Data set 9

Response Approach # Ecrit/Ecritp Eu-0.05
32 R | 0.86 C/G/A[d,
D 21 1 C/GJA
L 2 0.29 C/G/A|d2/B/d7/H/d12/E[dg/d4/d13
B 21 1 C/GJA
P 20 091 C/G/A/d>
95% 21 1 C/GJA
90% 21 1 c/GJA
85% 21 1 C/G/A
80% 19 082 C/G/A/d>/B
75% 18 074 C/G/A/d2/B/d;
33%7) R / 0.63 C/A/BJG/H[J/I
D 18 1 C/A/BJG/H/J/I
L 2 0.31 C/A/B[G[H/]/1/d12/E[ds/d4/d13
B 16 062 C/A/BJG/H[J/I
P 17 079 C/A/BJG[H/J/I
95% 17 079 CJA[BJG[H/J/I
90% 17 079 C/A/BJG/H[J/I
85% 17 079 C/A/BJG/H[J/I
80% 16 062 CJA[BJG[H/J/I
75% 16 062 C/A/B/G/H[J/I
34%(12) R | 0.20 C/A/BJF[K/E/D/G/H/J/L/I
D 23 1 Nothing
L 4 0.13 C/A/BJF[K/E/D/G/H/J/L/I/ds
B 1 0.21 C/A/BJF/K/E/D/G/H/J/L/I
P 23 1 Nothing
95% 22 0.93 C
90% 15 052 C/A/BJF/K/E/D/G
85% 15 052 C/A/BJF/K/E/D/G
80% 14 046 C/A/B/E/K/E/D/G/H/]
75% 14 046 C/A/BJF/K/E/D/G/H]]

Since no responses occurred with about 50% significant effects,
two such situations (Rg and R;) were created, by introducing
5 and 6 significant effects on responses (Asfg) and (%RSDg),
respectively. These responses Rg and R; with 5/11 x 100=45% and
6/11 x 100=55% significant effects, respectively, were then also
considered. To create these responses, some dummy effects were
replaced by significant effects. It also should be noticed that the
resulting responses have no physical meaning anymore.

In Table 4, the experimental design, the considered responses,
and the effects are given for this data set.

4. Results and discussion
4.1. Evaluation of the different approaches

In Table 3, for each data set (1 till 9) and each response, the
results are presented for the reference criteria (R), the algorithm
of Dong (D), and the alternative approaches (L, B, P, 95-90-85-
80-75%). For each approach, the number of factors included in
the estimation of sq, the critical effect relative to that of Dong
(Ecrit/Ecrit,p) both at a=0.05, and the effects considered significant
at a=0.05 (Eq=0,05), are given.

The algorithm of Dong (D) usually works fine in cases where
the effect sparsity principle is fulfilled. For responses 2 till 6, 8
till 12, 15 till 18, 20 till 21, 24 till 27, and 33, the same con-
clusions on effects significance are made as when using the
reference approaches (half-normal probability plot and/or the neg-
ligible effects) (Table 5). Compared to the reference criteria, false
negative results are obtained for responses 14 (2/11 x 100=18%
significant effects), 19 (2/11 x 100=18% significant effects), 30
(1/15 x 100=6.7% significant effects), 31 (2/15 x 100 = 13% signifi-
cant effects), and 32 (4/23 x 100 = 17% significant effects). In these
cases, the algorithm of Dong already seems to slightly overesti-
mate the experimental error, leading to a somewhat higher E; p,
compared to E.jc g (Tables 3 and 5).

In 8 out of the 11 cases where the effect sparsity principle was
violated and where thus about 50% of the effects are significant,
the algorithm of Dong fails in determining the significant effects
correctly. This is the case for responses 1, 7, 13, 22, 23, 28, 29, and
34. In these situations, many false negative results are obtained
relative to the reference criteria (Table 5).

For all 34 responses, 45 effects less than with the reference(s)
are indicated as significant. This is due to the fact that Dong overes-
timates the experimental error, leading to a too high E;; p, because
a number of significant effects are included in the error estimate
(Tables 3 and 5, Ecyitp > Ecritr)-

For the first alternative approach (L), the plots of ME as a func-
tion of the number of included effects (m) in the estimation of s
usually have a profile similar to Fig. 1, i.e. a profile that shows a
minimum. Only in one situation, i.e. response 21, the plot does not
show a minimum, but ME continuously increases with the num-
ber of included effects. This is probably caused by the fact that the
smallest effect (|Ex| = 0.00008) is much smaller than all other (range
|[Ex|=0.004-0.411).

For designs with N =8, this approach was found appropriate in
those situations where the number of significant effects approaches
50%. For example, all significant effects on responses 1, 7, 12, and
13 are correctly found, while the algorithm of Dong only indicated
them correctly for response 12 (Table 3). However, for situations
where the number of significant effects is far below 50%, this
approach leads to a relatively high number of false positive results.
This is, for example, the case, amongst others, for response 11,
where besides one significant effect, three non-important effects
are incorrectly indicated as significant.

For larger designs (N=12, 16, 24), this approach also leads to
many false positive results for situations where the number of sig-
nificant effects is low. This is, for example, the case for responses 15,
24, and 32, amongst others. In situations where the effect sparsity
principle is violated, this approach indicates the significant effects
correctly. For example, all significant effects on responses 21, 22,
23,28, 29, 33 and 34 were found important, while Dong only indi-
cates them correctly for responses 21 and 33. However, additional
false positive results are found in these situations. For example, for
responses 21,22, 23, 28, 33, and 34, some non-important effects are
also considered significant (Table 3).

The large number of false positive results when using this
approach can be explained by the fact that often the lowest ME,
which is used here, seriously underestimated the error on an effect
(see Table 3), leading to many non-significant factors that are incor-
rectly considered significant. It can be concluded that considering

0.8

0.6

0.4

Margin of Error

0.2

0.0

0 1 2 3 4 5 6 7 8
# included effects

Fig. 1. Margin of Error (MEq-0,05) plotted as a function of the number (#) of included
effects in the estimation of s; for response 13.
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Table 4

Application data set: 12-experiments Plackett-Burman design to evaluate the effects of six real factors (A till F) and five dummies (d; till ds), on seven responses, i.e. the %
relative standard deviations (%RSD) of vigabatrin (%RSDy ) and gabapentin (%RSDg) concentrations, the resolution between the vigabatrin peak and its nearest neighbour peak
(Rsy), the asymmetry factor of the gabapentin peak (Asfy), the plate number of gabapentin ((N/mm),), and the simulated responses Rs and R;.

Exp Factors Responses
A B C D B F G=d; H=d, I=d; J=d4 K=ds %RSD, Rs, %RSDy  Asfy (N/mm); Rs R7
1 1 1 -1 1 1 1 -1 -1 -1 1 -1 7.0 1.23 0.8 154 596 1.50 -0.7
2 1 -1 1 1 -1 1 1 1 -1 -1 -1 0.8 1.14 0.3 1.52 68.8 156 -1.2
3 -1 -1 1 -1 1 1 -1 1 1 1 -1 1.0 1.33 1.0 141 718 1.37 1.5
4 1 -1 -1 -1 1 -1 1 1 -1 1 1 0.6 1.51 0.9 142 634 142 -16
5 1 1 1 -1 -1 -1 1 -1 1 1 -1 1.8 1.22 13 1.56 63.7 1.60 0.8
6 1 -1 1 1 1 -1 -1 -1 1 -1 1 1.4 1.12 1.6 138 757 1.34 2.1
7 -1 1 1 -1 1 1 1 -1 -1 -1 1 1.5 1.92 0.8 141 68.0 141 -07
8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.5 1.99 0.5 141 770 141 -1.0
9 -1 -1 -1 1 -1 1 1 -1 1 1 1 0.6 1.26 0.8 142 83.1 1.46 23
10 -1 1 1 1 -1 -1 -1 1 -1 1 1 13 1.38 4.0 144 739 1.44 6.5
11 -1 1 -1 1 1 -1 1 1 1 -1 -1 5.0 1.02 6.9 148 647 148 114
12 1 1 -1 -1 -1 1 -1 1 1 -1 1 3.7 2.06 25 148 64.6 1.48 2.0

Responses  Effects

%RSD, 0.73 240 -1.77 1.00 1.13 050 -093 -023 0.13 -027 -1.33
Rsy -0.10 008 -0.16 -048 -0.15 012 -0.17 -005 -0.19 -022 0.22
%RSDg -1.10 187 -0.57 1.23 043 -1.50 0.10 1.63 113 -0.63 -0.03
Asfy 0.055 0.058 -0.005 0.015 -0.032 0.015 0.025 0.005 -0.002 0.018 -0.062
(N/mm); -7.12 -7.55 1.58 288 -465 -042 -1.82 -332 2.15 -0.55 3.85
Rs 0.055 0.058 -0.005 0.015 -0.072 0.015 0.065 0.005 —-0.002 0.018 -0.062
R7 -3.10 287 -0.57 3.23 043 -2.50 0.10 2.63 3.13 -0.63 -0.03
Table 5

Number of significant effects (# Sign) from the half-normal probability plot (HNPP), and from the critical effects based on negligible effects (NE), i.e. interaction (I) or dummy
(d) effects, from Dong (D) and from the 75% approach (75%), for the different responses. For the D and 75% approaches, the number of false positive (# FP) and false negative
(# FN) results, relative to HNPP and/or NE, are also indicated. * see Table 3.
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the lowest ME as critical effect was not found appropriate to deter-
mine effects significance.

The second approach (B), i.e. evaluating visually the half-normal
probability plot, was more appropriate to determine the number of
effects to include in the calculation of s;. When all effects deviating
from the non-significance straight line through zero are discarded,
more accurate estimations of the critical effects are obtained, also
for situations with about 50% significant effects and for larger
designs. In all 11 responses with about 50% significant effects, the
important effects are correctly indicated. In contrast with the algo-
rithm of Dong (D), no false negative results are obtained using this
approach (B), and compared to the first approach (L), this method
(B) usually also leads to less false positive results. The observed
is not unexpected as the graphical interpretation was part of the
reference approaches.

However, this approach also has some drawbacks. The inter-
pretation of the half-normal probability plot is not always
straightforward, i.e. it is not always evident to properly draw the
straight line through the non-significant effects. Occasionally, dif-
ferent lines could be chosen, resulting in considerably different
conclusions. In Table 3, it is indicated as B (1) and B (2) when the
decision was based on two different lines. This was, for example, the
case for response 23. When using B (1), four of the five significant
effects are considered non-significant. On the other hand, when
using B (2), all five effects are considered significant. The number
of effects included in the calculation of s; thus depends on a graph-
ical, i.e. a subjective, approach, which hardly can be generalized as
a statistical or mathematical one can.

Therefore, the search for a better methodology was continued
and other approaches were explored. From these possibilities (third
and fourth approaches), the best result, i.e. that having the critical
effect corresponding best to the reference approaches, was usually
obtained when calculating the median based on the 75% lowest
absolute effects, i.e. when using sg = 1.5 x median|E7sy|.

In situations with about 50% significant effects, the third
approach (P) does not always correctly indicate the significant
effects, and false negative results are obtained. This is the case in 7
out of the 11 situations, i.e. for responses 1, 13, 22, 23, 28, 29, and
34. The reason for the observed is that in the above situations, the
approach usually still leads to an overestimated error, and thus a
high critical effect (Table 3).

When using the fourth approach, different numbers of effects
included for sy were evaluated. When using the 95, 90, 85, or 80%
smallest effects in situations with about 50% significant effects,
often effects still were incorrectly considered non-significant, and
thus false negative results are obtained (Table 3). This is seen
for 7 out of the 11 cases, i.e. for responses 1, 13, 22, 23, 28, 29,
and 34.

The use of sg = 1.5 x median|E7s¢| (75% approach) leads to more
correct decisions on the effects significance than the algorithm
of Dong and the other alternative approaches. Especially in situ-
ations where the number of significant effects approaches the 50%
limit, this adapted algorithm is better capable of correctly identi-
fying the significant effects. Less effects are incorrectly considered
non-significant and thus less false negative results are obtained.
With this approach, the important effects are correctly indicated
without the occurrence of any false positive results in 9 out of the
11 responses with about 50% significant effects, i.e. for responses
1, 7, 12, 13, 21, 23, 28, 29, and 33. For the two other cases, i.e.
responses 22 and 34, this approach allows determining all signifi-
cant effects, except one (of five) and two (of twelve), respectively.
However, although in situations where the effect sparsity principle
is violated, only some rare false negative results are obtained, much
more effects are correctly indicated as significant, compared to the
algorithm of Dong (see Tables 3 and 5).

On the other hand, also in situations where the number of sig-
nificant effects is far below 50%, the adapted algorithm is capable
of identifying the significant effects, and usually without leading to
many false negative or false positive results. Compared to the refer-
ence criteria, false negative results are obtained only for responses
14, 19, and 31. However, the algorithm of Dong does not indicate
these effects as significant either.

Thus, in general, much less false negative results are obtained
using this approach than when using the algorithm of Dong, i.e. 7
versus 45 (Tables 3 and 5).

False positive results are seen for responses 3, 18, 20, 30, and 32.
Compared to the algorithm of Dong, this approach thus leads to a
somewhat higher occurrence of false positive results, i.e. 11 versus
0 (Tables 3 and 5). However, from a practical point of view, this
situation is much less problematic than when ignoring significant
effects. Here one will react when in fact it is not necessary, while in
the case of false negative results, one should react but does not.

In summary, the algorithm of Dong leads to many false nega-
tive results, especially in cases where the effect sparsity principle
is violated. The first approach (L or using the lowest ME) indicates
all significant effects correctly, but usually way too much false posi-
tive results are obtained. Although the second approach (B or visual
inspection of the half-normal probability plot) correctly indicates
all significant effects, with much less occurrence of false positive
results, this approach remains based on a graphical, thus a sub-
jective, interpretation, and is therefore less recommended. When
using the third approach (P) or some of the fourth approaches (95-
90-85-80%), still too many false negative results are again obtained.
The fourth approach based on the 75% lowest effects leads to the
best decisions on effects significance. Compared to the algorithm
of Dong, much less false negative results are obtained. A drawback
is that somewhat more false positive results are found, but as men-
tioned above, this is less problematic than the false negative results.

Therefore, when a Dong-like approach is used to identify signif-
icant effects, e.g. in minimal screening designs, we suggest, based
on the results of the case studies, to use the adapted algorithm,
where the 75% lowest absolute factor effects are used to calculate
the initial error estimate sg, i.e. sp = 1.5 x median|E75y|.

4.2. Application

In [18], the robustness of a high-performance liquid chromato-
graphic method to analyze three anti-epileptic drugs, pregabalin,
gabapentin, and vigabatrin, in human serum was examined using
the 12-experiments Plackett-Burman design, presented in Table 4.
The results of the robustness test were treated with the above
proposed methodology to determine the effects significance. In
Table 6, the results are presented for the algorithm of Dong and
the approach using sg = 1.5 x median|E7s¢|, for each response of the
application data set. As reference criterion, also the critical effects
based on the dummy effects are presented.

For the responses Rsy, %RSDg, and (N/mm)g, the same results
were obtained for both approaches (D and 75%). Compared to
the approach based on the dummy effects (d;.;-3-4.5), the same
conclusions were drawn, except for (N/mm),, where two effects
(Eg=-7.55 and E,=-7.12) are considered borderline significant
(E¢rit =6.71). For Dong (sg=4.33, MEy-005=8.76) and the 75%
approach (sg=2.98, MEy-g 05 =7.63), these two effects are consid-
ered non-significant, though in the latter case it is borderline. Thus,
the effects of B and A are to be considered borderline cases.

For the other responses, i.e. %4RSDy, Asfg, Rs and Rz, differ-
ent results were obtained for both approaches (D and 75%).
They are further considered in more detail. For %RSDy, the 75%
approach indicates factor B (Eg=2.40) as borderline significant
(s9=0.93, MEy-0,05 =2.11), while Dong considers it as borderline
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Table 6

Evaluation of the proposed methodology (75% approach) to determine effects sig-
nificance, and comparison with the critical effects (E;) based on dummy effects
and on the algorithm of Dong. For symbols used, see Tables 3-5. The results are
presented for the responses of the application data set.

Response Approach # Ecrie Ew=0.05
ZRSD, NE (d1-2-3.4.5) / 1.92 B
D 11 2.55 Nothing
75% 10 211 B
Rsy NE (d1-2-3-4-5) / 0.47 D
D 11 0.46 D
75% 11 0.46 D
%RSDg NE (d1-2-3-45) / 2.40 Nothing
D 11 242 Nothing
75% 11 2.42 Nothing
Ang NE (d1-2-3-4-5) / 0.080 Nothing
NE (d1234) / 0.044 ds/B/A
D 11 0.075 Nothing
75% 9 0.056 ds/B
(N/mm)g NE (d1-2-3-4-5) / 6.71 B/A
D 11 8.76 Nothing
75% 10 7.63 Nothing
Rs NE (d2.3.4) / 0.035 E/G/K/BJA
D 11 0.095 Nothing
75% 7 0.056 E/G/K/B
Ry NE (d1-4-5) / 118 D/I/A/B/H/F
D 11 4.79 Nothing
75% 5 1.10 D/I/A/B/H/F

non-significant (sg=1.40, MEq-g 5 =2.55). From the half-normal
probability plot (not shown), B does not clearly deviate from
the straight line of the non-significant effects. When using the
dummies (dq.2-3.4-5), B is also considered borderline significant
(Egrit = 1.92). Thus, the effect of B is a borderline case.

For Asfg, the algorithm of Dong does not indicate any effect as
significant (sg=0.028, MEq-g 05 =0.075), while the 75% approach
considers ds (Egq, = —0.062) and B (Eg =0.058) as borderline signif-
icant (sp =0.023, MEy-005 =0.056) and A (Ex =0.055) as borderline
non-significant. When evaluating the half-normal probability plot
(Fig. 2a), factors ds, B, and A deviate from the straight line. From
the critical effect based on the dummies (d1.2-3.4-5) (E¢it = 0.080),
no effects are considered significant. However, since the effect of
the fifth dummy (ds) is the largest, it should be excluded. The
critical effect based on four dummies (dq_5.3.4) was Eg; = 0.044.
Then factors ds, B, and A are considered significant. It might be
concluded that in this situation, the algorithm of Dong includes
too many effects to estimate sq, thus overestimating MEq-q o5 (see
Table 6) and indicating too few effects as significant. The alterna-
tive approach leads to more correct decisions on the significance,
because here the two highest effects are excluded from the s; error
estimation, resulting in a lower MEy—g g5. These observations con-
firm the conclusions from the earlier case studies.

For the simulated responses, Rg and Rz, which are in the context
of this paper most interesting, the number of significant effects
approaches 50%. The algorithm of Dong incorrectly indicates no
effects as being significant, since sg=0.028, MEq-¢ 05 =0.095 and
S0 =3.75, MEy-¢ 05 =4.79 for Rs and Ry, respectively (Table 6). The
half-normal probability plots for these two responses (Fig. 2b and
c) clearly indicate the presence of important effects, which are
obviously deviating from the non-significant effects. For Rg, fac-
tors E, G, K, B, and A are important, while for Ry, factors D, I, A,
B, H, and F are. Their effects are also considered significant when
evaluating the critical effects based on the dummies (E;; =0.035
and E.; =1.18 for Rg and Ry, respectively) (Table 6). When using
the 75% approach, four of the five significant effects are correctly

indicated for response Rg (Sg=0.023, MEq-005=0.056) and all six
for R7 (sp =0.90, ME,- 05 = 1.10). Thus, in these situations, the new
approach again leads to much less false negative results than the
algorithm of Dong. The latter included all 11 effects for the s, error
estimation, while the alternative methodology only 7 and 5 for Rg
and Ry, respectively, leading to lower and more accurate estima-
tions of the error and the ME,-g o5 (Table 6). These results again
confirm the earlier case studies conclusions.

In general, it can be concluded that the new methodology to
determine the effects significance from a screening design pro-
vides good decisions on the importance of the estimated effects.
In cases where the number of significant effects approaches 50%,
the approach based on sy =1.5 x median|E;5%| leads to more accu-
rate results on the effects significance than the original algorithm
of Dong, i.e. less false negative results are obtained. On the other
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Fig. 2. Half-normal probability plot of the 11 effects on the responses (a) Asfg, (b)

Rs, and (c) R7 (application data set, Table 4). The straight line of the non-significant
effects is drawn.
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hand, in case of effect sparsity, the 75% approach usually leads to
the same results as the algorithm of Dong.

5. Conclusions

In this paper, a new methodology to determine significance of
effects, estimated from a screening design, was developed starting
from the algorithm of Dong. It is suggested to apply the 75% lowest
absolute factor effects to calculate the initial error estimation sg,
i.e. sgp=1.5 x median|E754|.

This new methodology was compared with the algorithm of
Dong. Especially in situations with about 50% significant effects,
Dong includes too many effects in the s; error estimation, leading
to many important effects incorrectly considered non-significant,
i.e. false negative results. In these situations, the new methodology
includes a more appropriate number of effects, leading to more
accurate estimations of the error. In situations where effect spar-
sity occurs, the new methodology usually leads to the same results
as the original algorithm of Dong, although a somewhat higher
occurrence of false positive results is observed.

This new methodology was then successfully applied on a bio-
analysis application data set. The results confirmed those found
with the earlier case studies.

The new methodology is especially interesting to be applied in
minimal screening designs, i.e. situations where no or too few dum-
mies or negligible interaction effects can be estimated to be used
in the statistical interpretation of the effects.
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